Squishy, metal-free magnets to power robots and guide medical implants

Glove holding metal-free magnetic gel drug delivery method

“Soft robots,” medical devices and implants, and next-generation drug delivery methods could soon be guided with magnetism—thanks to a metal-free magnetic gel developed by researchers at the University of Michigan and the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.

The material is the first in which carbon-based, magnetic molecules are chemically bonded to the molecular network of a gel, creating a flexible, long-lived magnet for soft robotics. The study describing the material was published today in the journal Matter.

Creating robots from flexible materials allows them to contort in unique ways, handle delicate objects and explore places that other robots cannot. More rigid robots would be crushed by the deep ocean’s pressure or could damage sensitive tissues in the human body, for example.

“If you make robots soft, you need to come up with new ways to give them power and make them move so that they can do work,” said Abdon Pena-Francesch, assistant professor of materials science and engineering affiliated with the Robotics Institute at the University of Michigan and a corresponding author of the study.

Read the details

News Written By Derek Smith